Edge-preserving filtering by projection onto L0 gradient constraint

نویسنده

  • Shunsuke Ono
چکیده

We propose an edge-preserving filtering method with a novel use of the L0 gradient. Our method, termed as the L0 gradient projection, is formulated as the minimization of a quadratic data-fidelity to an input image subject to the constraint that theL0 gradient, the number of non-zero gradients, of the output image is less than a user-given parameter α. This strategy is much more intuitive than the conventional approach, the L0 gradient minimization, that minimizes the sum of the L0 gradient plus the quadratic data-fidelity, because one can directly impose a desired degree of flatness by α, which is impossible in the L0 gradient minimization. We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for solving the nonconvex optimization problem associated with the L0 gradient projection. The utility of the L0 gradient projection is illustrated by experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image smoothing via L0 gradient minimization

We present a new image editing method, particularly effective for sharpening major edges by increasing the steepness of transition while eliminating a manageable degree of low-amplitude structures. The seemingly contradictive effect is achieved in an optimization framework making use of L0 gradient minimization, which can globally control how many non-zero gradients are resulted in to approxima...

متن کامل

Low-dose spectral CT reconstruction using L0 image gradient and tensor dictionary

Weiwen Wu1,2, Yanbo Zhang2, Qian Wang2, Fenglin Liu1,3,*, Peijun Chen1 and Hengyong Yu2,* 1Key Lab of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Chongqing 400044, China 2Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA 3Engineering Research Center of Industrial Computed Tomography Nondestructive...

متن کامل

Efficient gradient projection methods for edge-preserving removal of Poisson noise

Several methods based on different image models have been proposed and developed for image denoising. Some of them, such as total variation (TV) and wavelet thresholding, are based on the assumption of additive Gaussian noise. Recently the TV approach has been extended to the case of Poisson noise, a model describing the effect of photon counting in applications such as emission tomography, mic...

متن کامل

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

Structure Preserving SAR image despeckling via L0-minimization

In this paper, we propose a new method for synthetic aperture radar (SAR) image despeckling via L0-minimization strategy, which aims to smooth homogeneous areas while preserve significant structures in SAR images. We argue that the gradients of the despeckled images are sparse and can be pursued by L0-norm minimization. We then formularize the despeckling of SAR images as a global L0 optimizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017